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Abstract 
Modeling is quite critical and remains a bottleneck for model-
based diagnosis in many application domains. Quantitative 
models that are developed during the design stage are not 
applicable as so to model-based diagnosis engines. This paper 
proposes to take advantage of discretization algorithms used by 
the machine learning community to discretize the domain 
value of continuous variables and generate a behavioral 
qualitative model from the data clusters corresponding to 
classified data. The results of this approach are illustrated and 
discussed with the two tanks benchmark example. 

Introduction  
Nowadays, model-based diagnosis methods are generally 
opposed to data-based methods. These later rely on 
machine learning methods which are able to exhibit classes 
of different behavior directly from the data. The former 
assume the availability of a (behavioral) model of the 
system that can be used to predict what should be 
observed.  The model is hence used as a reference: any 
discrepancy indicates a problem and the knowledge of the 
components involved in the prediction leading to 
discrepancies can be used to retrieve the cause of the 
problem. The advantages of the model-based approaches 
are several, in particular the model provides a 
representation of underlying knowledge that can support 
different tasks along the system’s life cycle. 
     However, modeling is still a bottleneck in many 
application domains. In the last few years, the qualitative 
reasoning and model based communities have been 
working to find solutions to generate automatically models 
that could be applied to model-based diagnosis engines. 
But little has been done starting with the idea that machine 
learning methods could extract the model knowledge from 
the data.  
    This paper proposes to take advantage of discretization 
algorithms used by the machine learning community to 
discretize the domain value of continuous variables and 
generate a behavioral qualitative model from the data sets 
corresponding to classified data. This model must be 
discriminating in the sense that the data belonging to 
different behavioral modes, e.g. normal and faulty, must be 
distinguishable. The discretization algorithm should hence 
allow us to generate a set of relevant “landmarks”, i.e. 
thresholds defining the variable value domains 
discretizations, for the different continuous variables 
involved in the relations exhibited by the classifier. The 

classifier that has being used for this purpose is the 
LAMDA classifier (Aguilar et al. 1982). The results of our 
experimental study have been obtained with the two tanks 
benchmark example.  
     The next section of this article gives the problem 
formulation and presents related works. Section 3 focuses 
on discretization algorithms. Then, Section 4 describes the 
proposed approach to generate a qualitative model for 
diagnosis. An application example is presented in Section 
5. Concluding remarks are drawn in the last section.  

Problem formulation and related work 
Previous works of the qualitative reasoning community 
about qualitative model generation were mainly performed 
in the framework of the IDD (Integrated Design process 
for on-board Diagnosis) European project (Brignolo et al. 
2001). They start with the idea that most engineering 
models developed during the design stage are in the form 
of MATLAB/Simulink models. Hence these models are 
available and different runs can be performed to exhibit the 
qualitative input-output relationships of a qualitative 
model.  
 Most of the proposed methods rely on monotonicity 
properties of the output functions and require to be able to 
identify the monotonicity domains, which is far from 
trivial for non linear systems. The results hence seem 
restricted to particular cases. 
     (Console et al. 2003) proposes to derive qualitative 
deviation models. Deviation models are a special type of 
qualitative model that state the relationships between the 
variable deviations. Deviations represent the difference 
between the value of a variable an its expected normal 
value, e.g. ∆x = x – xref for a variable x. Qualitative 
deviations proceed to a sign abstraction and hence 
represent whether the value is equal, lower or higher than 
expected, i.e. [∆x] = sign(x – xref).  This approach requires 
to identify the monotonicity domains of the output 
function, then proceeds to a series of simulations according 
to a fixed number of sampling points. The approach is not 
able to always conclude about the deviation sign and it 
does not scale up nicely to spaces of dimension higher than 
2. 
     (Yan, 2003) (Yan et al. 2004) propose to derive input-
output mapping qualitative models. Consider a system with 
a 2 dimensional observable space and assume that x and y 
are the input and output observable variables, then the 
system can be modelled by a function of type y = f(x). 
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Behavioral modes are characterized by a set of input-
output tuples ((xi,xi+1),(yj, yj+1)), where xi, i=1, …, n and yj, 
j=1, …, m are the landmarks defining the discretization of 
the value domains of x and y respectively (cf. figure 1).  
This description easily extends to the n-dimensional case Y 
= f(X), where X and Y are then input and output vectors. 

Figure 1: Input-output mapping qualitative model  
(from (Yan 2003)) 

 
For robustness purposes, (Struss 2002) prefers to proceed 
to the qualitative abstraction for a behavior envelope. 
However the behavior envelope is still bounded by two 
functions, as shown in figure 2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Abstraction of an envelope behavior  
(from (Struss 2002)) 

 
The problem is formulated as the one of determining the 
set of landmarks for observable variables domains such 
that a given behavior mode M1 is discriminable from 
another behavior mode M2, i.e. there exists at least one 
input interval (xi,xi+1) for which the sets of corresponding 
output tuples for M1 and M2 are different. Hence, the 
partitioning must introduce a minimal number of 
landmarks while being sufficiently tight to discriminate all 
behavioral modes. The resulting qualitative model is said 
to be discriminating. The discriminability problem is 
illustrated in figure 3. 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
Figure 3: Discriminability  problem 

 
 (Yan, 2003) and (Yan et al. 2004) the qualitative model 
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generation proceeds in two steps: the value domain of each 
variable is discretized in an arbitrary way (in general with a 
predefined number of intervals of equal length) and for 
each input region, the output regions hit by the output 
function or behavior beam are determined. These 
approaches suffer from the same scaling up problem as 
(Console et al. 2003). 

hine learning algorithms are used to extract knowled
from databases. Most algorithms can only be applied to 
data described by discrete and symbolic attributes. In case 
of continuous attributes, this community has proposed 
several so-called discretization algorithms that transform 
continuous attributes into ordered discrete ones. These 
algorithms aim at speeding up the generation of decision 
trees, resulting in smaller and hence more easily 
interpretable decision trees, by finding the discretization 
with minimum number of intervals that minimises 
information loss.  

The above co
rithms can as well be applied to our problem, provided 

data is available. Unlike the approaches presented in the 
previous section, we do not require the availability of a 
MATLAB/Simulink type simulation model but propose to 
extract the knowledge directly from historical recorded 
data. These data is first applied to a classification algorithm 
that is able to distinguish relevant classes corresponding to 
different behavior patterns of the system. The classified 
data is then applied to a discretization algorithm.  

We paid particular attention to two discr
rithms, namely the CADD (Class Attribute Dependant 

Discretizer) algorithm (Ching et al. 1995), and the CAIM 
(Class Attribute Interdependence Maximization) algorithm 
(Kurgan and Cios 2004). These algorithms apply without 
modification to problems of any dimension.  



CADD is based on a criterion called CAIR (Class 
Attribute Interdependence Redundancy), which is built on 
the notion of class-attribute joint entropy and class-
attribute mutual information. On the other hand, CAIM is 
based on a more intuitive criterion. Both algorithms make 
use of heuristics to cut the computational cost. 
      Building a decision tree starts with classified data, i.e. 
each data sample belong to a similarity class. Let us 
consider a population of M data samples distributed in S 
classes Ci and consider that the value domain of an 
attribute Aj is partitioned into n discrete intervals 
[d0 ; d1],]d1 ; d2],…,]dn-1 ; dn]. For this attribute, the 
following table, which associates the number of samples of 
the population representing the attribute (noted qij) to every 
class-interval couple, is generated.   
 

 
In the table the following notations are used: 
Mi+: number of samples belonging to class Ci 
M+r: number of samples whose attribute Aj has its value in 
]dr-1 ; dr] 
 
The following « probabilities » are then defined: 
Probability of a sample  to belong to class Ci : 
   
 pi+ = p(Ci) = Mi+ / M   
 
Probability of a sample  to belong to interval ]dr-1 ; dr] : 
  p+r = p(]dr-1 ; dr]) = M+r / M  
 
Probability of a sample to belong to class Ci and 
interval ]dr-1 ; dr] : 
  pir = p(Ci, ]dr-1 ; dr]) = qir / M  
 

The CADD Algorithm 
In the CADD algorithm (Ching, Wong, and Chan 1995), 
the criterion to be maximized (CAIR) is the quotient of the 
class-attribute mutual information and the Shannon 
entropy: 
 Class-Attribute Interdependence Redundancy (CAIR) :  
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The class-attribute mutual information alone could have 
been chosen as a criterion but its value depends on the 
number of intervals. It is hence not suitable for minimising 
the number of intervals. I(C, Aj) increases with the number 
of intervals but this increase is compensated by the 
increase of H(C,Aj) in the CAIR criterion.  
       The CADD algorithm proceeds in three steps: 
1- Initialisation  
1.1- Sort the values taken by the attribute in increasing 
order  and distribute them in n intervals (the number of 
initial intervals is defined by the user or by another 
criterion) 
The initial partition must distribute the values equally to 
minimise the information loss. A max entropy criterion is 
generally chosen. 
1.2- Build the table 
1.3- Calculate the criterion CAIR.  
 
2- Perturbation step 
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2.1- Improve CAIR by introducing perturbations on the 
landmarks of the initial partition (increase or decrease the 
landmarks). Select the perturbation that most improves 
CAIR. Iterate until no more CAIR improvement. 
 
3- Merge intervals 
Merge the intervals that do not contribute significantly 
enough to the interdependence criterion by proceeding to 
the following test: 
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If the test is TRUE: move to the next adjacent intervals  
ELSE: merge the two intervals. 

The CAIM Algorithm 
The CAIM algorithm (Kurgan and Cios 2004) is more 
recent and aims at reducing the computation time. It is also 
based on a heuristic but the criterion is simpler: 
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with maxr = Max (qir | i = 1,…, S). 



It is easy to notice that when the criterion increases, the 
class-attribute interdependence (correlation between the 
interval partitioning and the classes) also increases. 
Dividing by M+r has two goals: on the one hand it permits 
to account for the negative influence of the samples 
belonging to other classes than the leading one (class most 
represented in a given interval), on the other hand it avoids 
a possible excess error when evaluating: 

r

r
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in the case of a high number of samples and reduced work 
memory. Finally, dividing by n is in favor of minimizing 
the number of intervals of the discretization.  
 
The CAIM algorithm can be summarized as follows: 
For each attribute Aj do 
Step 1 
1.1- Find the max and min values dn and d0 
1.2- Sort the values of Aj in increasing order and find all 
the possible landmarks in between d0 and dn. Stack them in 
B. 
1.3- Define D = {[d0 ; dn]} and GlobalCAIM = 0. 
 
Step 2 
2.1- k = 1 
2.2- Try to insert a landmark of B in D and determine the 
corresponding CAIM ; 
2.3- After trying all possibilities, select the one with the 
highest CAIM ; 
2.4- If (CAIM > GlobalCAIM or k < S) update D with the 
selected landmark and do GlobalCAIM = CAIM 
Else end 
k = k+1   and go to 2.2 
 
The algorithm returns a discretization D that contains all 
the selected landmarks.  
 

Qualitative model  generation for diagnosis 
 
Our objective is to generate automatically a behavioral 
model of the process that can be applied to model- 
diagnosis engines. The challenge is to generate a 
discriminating model able to distinguish the different 
behavioral modes of the system. The aim is to clearly 
distinguish normal from faulty behaviors and to 
characterize each mode through the generation of relevant 
landmarks associated to each state variable involved in the 
process evolution and considered by the classifier.  

This approach can be viewed as an attempt to establish 
a bridge between data-based approaches and model-based 
approaches for diagnosis (see figure 4).  

Indeed, the use of data mining techniques along with 
expert knowledge is commonly used for the diagnosis of 
complex processes. In such systems, an increased level of 

complexity and automation overloads the role of human 
operators who must perform not only physical tasks but 
also, and mainly, cognitive tasks. 
 

 

 

 

 

 

 

 

 
 
 

 
Figure 4:  A bridge between Data-Based and Model-Based 

diagnosis approaches 
 
These techniques permit the identification of the different 
functional states, normal and/or abnormal, of a complex 
process. Data mining techniques are applied to extract 
information from historical data records. The observation 
space is defined by the selection of a set of representative 
variables which best characterize the process functional 
states. The goal is to perform the partition of the 
observation space to represent and discriminate the classes 
associated to normal and/or abnormal situations from a 
series of process data. This partition is defined as a 
learning stage, where according to the available 
information of the process, the expert may totally or 
partially associate the training data set into different 
classes. Once the known situations have been 
characterized, the monitoring task is to associate a new 
observation with one of the expected process behaviors, 
that is equivalent to assign the element obtained by the new 
observations to a learned class. Any unrecognized 
observation corresponds to a deviation from the expected 
behavior and leads to a symptom detection. This detection 
procedure based on such a discrepancy principle allows 
taking into account abnormal situations due to real failures 
on the process sensors and/or actuators but also unexpected 
situations which correspond to a normal operating of the 
process not considered in the elaboration of the behavior 
pattern. The capability to detect abnormal states must be 
completed with the cause’s identification of these 
abnormal situations which corresponds to fault diagnosis.
 Therefore, in such approaches, the diagnosis is mainly 
performed by the process operators to which meaningful 
information must be presented in a convenient way such 
that it is easily interpretable. The automatic generation of a 
behavioral model issued from classified data that can be 
applied to model-diagnosis engines is then an interesting 
issue. At this preliminary stage the focus was put on 
showing the feasibility of our approach rather than on a 
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deep analysis of discretization algorithms and available 
classification/clustering methods. We hence decided to use 
a fuzzy method for conceptual clustering and classification 
developed in our research team. This method, called 
LAMDA, is based on finding the global membership 
degree of a data sample to an existing class, considering all 
the contributions of each of its attributes. A software tool 
called SALSA "Situation Assessment using LAMDA 
claSsification Algorithm" provides different learning 
strategies (supervised or not) and the user can obtain 
different partitions with the same data set, by changing 
various parameters to improve the quality of the final 
classification (Kempowsky et al. 2003). 
 The CAIM algorithm has been used for the 
discretization step having in mind the minimization of the 
number of intervals (Kurgan 2004). 

Application to a two-tanks system 

 
 

Figure 5: The two-tanks system  
(from (Bouamana 2001)) 

 
The proposed approach has been applied on a simple 
system composed by two coupled tanks developed at the 
University of Lille (see figure 5). The two tanks are 
connected by a pipe and are controlled to provide a 
constant water flow Q0.  The water level in the tank T1 
(nominal value h1=0,5m) is controlled by a PI controller 
via a pump P1 providing the inlet flow Qp. The water flow 
between the two tanks can be controlled by an on/off 
controller acting on a valve (Vb). The water level of tank 
T2 must be kept at a medium level (0,09m≤h2≤0,11m). The 
valve V0 is opened in nominal operating and simulates the 
water outflow to a consumer. Finally, the two valves Vf1 et 
Vf2 can be used to simulate failure situations (leakage in 
the tanks), these two valves are closed in faultless mode. A 
Matlab/Simulink model of the benchmark has been used to 
obtain the relevant data. 
 First, the normal behavior (faultless mode) has been 
simulated and observed through the two levels h1 et h2 (see 
figure 6). 
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Figure 6: Faultless behavior of the system 
 
Then, a failure scenario corresponding to a pump blockage 
(pump off: Qp=0) has been simulated.   In order to obtain 
relevant classification results, several blockages are 
sequentially simulated and used to generate a relevant data 
set for training.  
 In our case study, a training data set of 423 samples 
(individuals) representing three successive pump blockages 
has been used. Unsupervised learning is chosen since no 
prior knowledge about the possible situations is given. 
Because all descriptors are quantitative SALSA needs to 
normalize them to the unit interval [0,1] in such a way that 
they can be treated simultaneously. Figure 7b shows the 
behavior of the different variables (descriptors) chosen for 
the construction of the behavior pattern: h1 (level in the 
tank T1) , Qp (flow of the pump P1)and Up (the output of the 
PI controller). SALSA initially identifies six different 
classes (one class per line) (figure 7a) that best represent 
the operation of the system. Each sample (each abscissa) is 
associated to one corresponding class. Classes C1 and C2 
respectively correspond to the faultless behavior of the 
system and the pump blockage, whereas classes C3 to C6 
correspond to transitions states to normal operating.  
 
 



 
 

Figure 7. a : Training data: failure scenario: pump blockages b: 
Classification results. 

 
Figure 8 gives a visualization of the classification results 
(classes C1 to C6) in the description space through group of 
dots. To a better visualization of the state space partition 
only the descriptors h1 and Qp  are considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: 2-D visualization of the classification results 
 
The next step consists in using the CAIM discretization 
algorithm on this classification to generate a qualitative 
model. For a better readability, once again only a 2-D 
representation is shown in figure 9.  
 The result is questionable: the discretization of the pump 
flow Qp variation space  is relevant but the one of the level 
h1 could be improved: the obtained intervals do not ensure 
the discrimination of the classes C2 to C6. Therefore, the 
behavioral modes of the system i.e. normal or faulty are 
not clearly distinguishable. This can be explained by the 
fact that the data set used for the classification mainly 
includes samples corresponding to the normal operating of 
the system (class C1). As the criterion used in the 
discretization algorithm is quite similar to the entropy 

concept, the classes with few elements have less influence 
than the others.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Discretization results 
 
To deal with this discrimination aspect, another test has 
been performed based on a new failure scenario. This time, 
the failure scenario includes first a leakage of the tank T1 
and then a pump blockage. From the previous 
classification, a recognition procedure using the same 
descriptors has been launched via SALSA to obtain the 
resulting classification (figure 10).   
 

 
 

Figure 10: Classification results for scenario 2 
 
The recognition mode of SALSA allows to reject the 
elements that cannot be assigned to any existing classes i.e. 
elements that do not correspond to any of the expected 
behaviors. These elements are assigned to the class C0 
called the NIC (Non Informative Class) class without 
modifying the existing ones. 
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 For the discretization step, the NIC is considered as any 
class.   The results have been improved (figure 12) as the 
discrimination of the classes is now ensured. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Classification results for scenario 2 

 
By adding the leakage simulation in the failure scenario, 
new elements have been added to the classes with 
consequence to enhance the influence of these classes on 
the discretization criteria and therefore to obtain a more 
suitable interval decomposition (figure 12). The resulting 
qualitative model is shown in figure 13.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 12: Discretization results for scenario 2 

Conclusion and future work 
This paper proposes a method to derive a discriminating 
qualitative model that can be use for model-based 
diagnosis. Unlike the other approaches of the Qualitative 
Reasoning community, the method does not assume the 
availability of a MATLAB/Simulink simulation model to 
generate the data but is able to extract the knowledge 
directly from historical data recorded on the real process. 

These data is first applied to a classification algorithm 
that is able to distinguish relevant classes corresponding to 

different behavior patterns of the system. The classified 
data is then applied to a discretization algorithm.  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 13: Resulting qualitative model 
 

The experiments with the LAMDA classifier and the 
discretization algorithm CAIM performed on the two-tanks 
benchmark example show the feasibility of the approach.  

Some work remains to be done to provide the 
qualitative model in an explicit form. Indeed, in the case of 
the second two-tanks scenario, the qualitative model is 
directly given by the obtained discretization, as illustrated 
by figure 13. However, in other cases, like the first two-
tanks scenario, some landmarks indicated by the 
discretization are questionable and it may be necessary to 
proceed to a further filtering step for deriving the final 
qualitative model.  

Another interesting issue is to establish the link 
between the obtained qualitative models and consistency 
relations as used in the model-based diagnosis approach. 
Consistency relations are relations that only involve 
observable variables and can hence be evaluated from the 
sensored observations. Consistency relations are also 
known as analytical redundancy relations (ARRs) when 
derived from a quantitative model (Cordier et al. 2004). 
From the hypothesis supporting the existence of the 
consistency relations, it is possible to establish the 
operating modes signatures, or in other words to determine 
the subset of consistency relations that are satisfied or 
violated in such and such operating mode. Consistency 
relations hence characterize the observable subspaces 
corresponding to the projection of the different operating 
modes of the system in the output space. They play a 
crucial part in the diagnosability properties of a system and 
possible discrimination of its different operating modes 
(Travé-Massuyès et al.2004) (Travé-Massuyès et al. 2003). 
The discriminating qualitative relationships exhibited by 
the qualitative models obtained by our method are hence 
closely related to what could be called qualitative ARRs 
and this needs further analysis.  
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